S K R GOVERNMENT DEGREE COLLEGE (W)

Accredited by B+ level by NAAC RAJAMAHENDRAVARAM, E.G.Dist., A.P.

Performance Appraisal Report for self-appraisal of Teachers up to 2022

A. GENERAL INFORMATION

B. ACEDEMIC QUALIFICATIONS

Exam Passed	Board / University	Subjects	Year of Passing	Division /Grade
SSC	Board of Secondary Education HYD, A.P.	Languages, Maths, Science, Social	1979	III
Intermediate (MPC)	Board of Intermediate Education HYD, A.P.	Languages, Maths, Physics, Chemistry	1981	II
B.Sc. (Mathematics)	Andhra University Waltair, A.P.	Mathematics(Main) Physics Chemistry	1986	I
M.Sc. (Applied Maths)	Andhra University Waltair, A.P.	Ordinary Different equations, Real Analysis, Its Application,	1986	I
Graph Theory \& Its				
M.Phil.	A.U.P.G. Exication Mechanics Centre, Nuzvid, A.P.	Boundary Value Problems	1990	I

C. RESEARCH EXPERIENCE \& TRAINING

Research Stage	Title of Work / Thesis	University where the Work was Carried out
M.Phil.	Boundary Value Problems	A.U.P.G. Extension Centre Nuzvid, A.P.
Ph.D.	Registered	ANU, Guntur, A.P.
Post-Doctoral	-	-
Publications	01	Two point BVPS for second orders system Bull. Call. Math. Soc.82, $513-518 ~(1990) ~$
Research Guidance	-	-
Training	-	-

D. RESEARCH PROJECTS CARRIED OUT : -NA-

E. DETAILS REGARDING REFRESHER COURSES / ORIENTATION COURSES, SEMINARS, CONFERANCES, SYMPOSIA, WORK SHOPS ETC. ATTENDED.

S.No	Name of the Activity	Title	Agency	Place
1	$\begin{gathered} \text { Orientation Course } \\ 19-01-2000 \\ \text { to } \\ 12-02-2000 \\ \hline \end{gathered}$	-	ASC, AU	Andhra University, Visakhapatnam, A.P.
2	$\begin{gathered} \text { Refer her Course } \\ 03-10-2002 \\ \text { to } \\ 23-10-2002 \\ \hline \end{gathered}$	-	UGC	Kurukshetra University, Kurukshetra, Haryana.
3	Refer her Course $\begin{aligned} & 15-06-2007 \\ & \text { to } \\ & 05-07-2007 \end{aligned}$	-	UGC	University of Hyderabad, Hyderabad, A.P
4	$\begin{gathered} \text { Refer her course } \\ 10-11-2008 \\ \text { to } \\ 27-11-2008 \\ \hline \end{gathered}$	-	UGC	Himachal Pradesh University, Shimla, H.P
5	State Level Seminar	Standardization of Curriculum at UG \& PG level Courses.	$\begin{gathered} \text { APSHE } \\ \& \\ \text { ACTA,AP } \end{gathered}$	Andhra Loyola College Vijayawada, A.P
6	$\begin{gathered} \text { 2 day work shop } \\ 19^{\text {th }} \& 20^{\text {th }} \text { Jan } 2014 \end{gathered}$	Recent trends in fluid Mechanics \& Numerical Techniques	AICTE	Sri Vasavi Institute of Engineering \& Technology, Nandamuru
7	$\begin{gathered} 2 \text { day National } \\ \text { Seminar } \\ 20^{\text {th }} \& 21^{\text {st }} \text { Aug } 2014 \end{gathered}$	The Role of Mathematics \& Information Science in design of sophisticated systems	 Krishna University Machilipatnam	Andhra College Vijayawada
8	3 day District level Training Programme $25^{\text {th }} \& 27^{\text {th }}$ Sep 2014	Human Values \& Professional Ethics	GDC (A)	GDC (A) Rajahmundry

S.No	Name of the Activity	Title	Agency	Place
9	$\begin{gathered} \text { National Seminar } \\ 29^{\text {th }} \& 30^{\text {th }} \text { Aug } 2015 \end{gathered}$	Role of Literature in cultural Studies	Central Institute of Indian Languages Mysore	S K R COLLEGE FOR WOMEN RAJAHMUNDRY
10	State Level Workshop 09-10-2014	Higher Education The Role \& Teacher	AVN College	AVN College Visakhapatnam
11	National Workshop $18^{\text {th }} \& 19^{\text {th }}$ Dec 2015	Appl. of diff. eqns.	Dept. of Maths Ch.S.D. St. Theresa Women's College	Ch.S.D.St. Theresa Autonomous College for women Eluru
12	International Level Webinar $06^{\text {th }}$ July 2020	Telugu linguistics Applications \& tools	Rayalaseema University	Rayalaseema University Kurnool, A.P
13	2 day state level on line workshop $1^{\text {st }} \& 2^{\text {nd }}$ Aug 2020	Learning Management System (LMS)	VSM College (A)	VSM College (A) Ramachandrapuram A.P.
14	$\begin{gathered} 5 \text { day FDP } \\ 13^{\text {th }}-17^{\text {th }} \text { July } 2020 \\ \hline \end{gathered}$	CCE Govt of AP	-	ONLINE
15	1 week National FDP $21^{\text {st }} \& 27^{\text {th }}$ July 2020	Mathematical Elements in Engg. \& Applied Sciences	-	Gayathri Vidya Parishad Visakhapatnam
16	$\begin{aligned} & 1 \text { day National } \\ & \text { webinar } \\ & 1^{\text {st }} \text { July } 2020 \end{aligned}$	Significance of Social work Profession in the content of new social environment	-	AKNU Rajahmundry
17	$\begin{gathered} \hline \text { State Level Quiz } \\ 8^{\text {th }} \text { Aug } 2021 \end{gathered}$	Dept. of Sociology, History	SKRCW	SKR COLLEGE FOR WOMEN Rajahmundry
18	National Webinar $14^{\text {th }}$ Sep 2022	Hindi Day	ICERT	ONLINE
19	1day National Webinar $08^{\text {th }}$ Oct 2022	Effective Implementation of NEP 2020 Role of Teachers \& Institutions	IQAC	Mary Stella College Vijayawada
20	International Webinar $20^{\text {th }}$ Sept 2022	MATLAB AN OVER VIEW	$\begin{gathered} \text { DNR GOVT } \\ \text { DEGREE } \\ \text { COLLEGE } \end{gathered}$	Palakol, A.P

$=$

S. ${ }^{\text {s }}$	hey Indicator	List of files documents to be kept ready as a proof of key Indicator	Information in suppart of the key indicator	Key Aspect Scores	Predetermine d Weightage (Wi) Tor Key Indicator	Key Indicator Grade Points $(\mathrm{KIGP)} \quad$ (A $=3 ; \mathrm{B}=2 ; \mathrm{C}=1 ; \mathrm{D}=0)$	$\begin{gathered} \text { Key Indicator Wise } \\ \text { Weighted Grade } \\ \text { Points (KIWWGP) } \\ =K I G P \times W i \end{gathered}$	KINWGP as per Acdemic devisor's grading	Guidelines
I Counseling of students as Menter/ Class teacher									
14	Student Support	1 Counseling of students as Mentor/Class teacher a Student Profile Collectuon updation and mamenance b Semester wise 2 Any other Study Material/Guidance ai Academue guidance for the adi anced leamer (offerng suggestions/reference books) biHandholding the slow learners (offering study material question banks) 3 Guiding/Montoring Students for CSP Internship 4 Organzing/Partuctpation in Parent Teacher Meetings	Reports in the NiAC fornat	$\begin{aligned} & 20 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	50	A	150		IIAll Four key indicators $=j$ Grade points t 2) Any Three hey indicators =2 Grade points B 3)Any Two hey indicator $=1$ Grade point C 4)Belon rwo $=0 / \mathrm{D}$
15	Student Progression	Report on Progranune Course wise students' progression to a) Higher Education biEmployment elEntrepiencurshp	Repens in the NAAC fornat	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	30	B	80		$\begin{aligned} & \text { 1) All three key indicators }=3 \text { Grade points' } A \\ & \text { 2) Any two hey indicators }=2 \text { Grade points } B \\ & \text { 3iAny one key indicator }=1 \text { Grade point } C \\ & \text { 4)No Indicator }=0 \mathrm{D} \end{aligned}$
V1-ROLE ININSTITUTIONAL GOVERNANCE									
10	Pamcipanon in Institutional Governance and Leadership	a)Contribution to Departmental \ision \& Mission and Departmental Action Plan b) Participation in different instritional commuttecs and preperation of committee reports c) Participation in different institutional activitues that focus on valuc based education d) Contribution to IQAC qualin mitatices	Reports in the NAAC format	4×10	40	P	120		$\begin{aligned} & \text { 1) All Four hey indicators }=3 \text { Grade points A } \\ & \text { 2)Any Three key indicators }=2 \text { Grade points B } \\ & \text { 3)Any Two key indicator }=1 \text { Grade point C } \\ & \text { 4) Below two }=0 / \mathrm{D} \end{aligned}$
VII-BEST PRACTICES									
17	Best Practices	Identification and Contribution to a) The Departniental Best practices b)Instutuonal Best practices Total Grade points	Reporis in the NAAC format	20	${ }^{20}$	A	60		11All Two key indicators $=3$ Grade points $/ A$ 2)Any one key indicator $=$ 2 Grade ponts B 31No Indicator=0/D
Vame	genature of the Procipa		Total Grade points						

prome

PRINCIPAL
S.K.R. Government Degree Collego foment RAJAMAHENDRAVAGAVi.
East Godavari Dist., Anchra F: ectesh

TEACHING DIARY FOR THE YEAR 2022 - 2023

Name of the Department / Subject : MATHENATICS
Name of the Lecturer: M. VEERRAJU
Month \& Year :

$\begin{aligned} & \text { S. } \\ & \text { No. } \end{aligned}$	D. Date	Day	Class	Period / Time	Medium	Theory / Practical	Topic Covered	Methodology Adopted	No.of Students attended	Teaching Aids Used	Student Activity Conducted	Remarks
	$17+723$	Man	Sr-inter MN	$\begin{array}{c\|} \hline 15 t \\ 10.02-10.51 \\ \hline \end{array}$	ETM	Theory	partial frachons Rub-(AT) - solved probloms	Lectux	48	Black Board	Quentan and Anserers	
			Jr-inar MPC	$\begin{gathered} 6 \mathrm{~m} \\ 355-4.30 \end{gathered}$	EM	Theory	Adjolut and Inverse of a matr	Luture	40	Black Board	Questan and Answers	
	$1817 / 23$	The	Sr-inter MPC	$\begin{aligned} & .2 n d \\ & \frac{16555+11.56}{4 m} \end{aligned}$	EM	Theons	UNIT Enaur an complux numi	Lecture	47	Black Boad	Queshar and Answers	
			Jr-inter Mre		EM	Theory	Exericus-3(e^{\prime}) - probloms tolving	Lertur	38	Black Boad	Quertan and Answess	
	1917123	wed	sr-inter MPC	$\begin{gathered} 35 d \\ 11.3 i-12.4 \end{gathered}$	EM	Thoory	portial Frachons RuG-TV-Sdved Problems	Lecture	47	Black Boad	Questar and Amwers	
			$\begin{gathered} \text { Tr-inter } \\ \text { MpC } \end{gathered}$	$\begin{gathered} 5 \mathrm{~m} \\ 240-3.25 \end{gathered}$	EM	Theary	UNIT Exame condueted	Luture	41	Black Board	Questar and Anstalea	
	2017123	Thus	Jr indr MrS	$\lim _{1.45-2.46}$	EM	Theory.	Consitepiry and Inconsistenly rintroduction 4 problem setving	Lectur	40	Black Board	Questian and Answers	
			$\begin{gathered} \text { Sr-inter } \\ \text { MpC } \end{gathered}$	$\begin{gathered} 6 \mathrm{~m} \\ 335-4 \cdot 30 \end{gathered}$	EM	Theary	Eurcise-7(b)-poblem solving	Lectux	46	Black Buars	Questan and Anluess	
	211723	Fri	$\begin{gathered} \text { Tr-inkr } \\ \text { Mpe } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2 \pi d \\ \text { woss } 1,5 \mathrm{c} \\ \hline \end{array}$	EM	Theory	Sodved lioblemi-3.6.7	Lecture	41	Black Board	Quetion and Arviena	
			$\begin{gathered} \text { Sr-inkr } \\ \text { Mje } \end{gathered}$	$\begin{array}{c\|} 4 \pi \\ 1 \cdot 45-2.44 \end{array}$	Em	Theory	Excercix-7(h)-probloins solving	Lecture	46	Black Board	Questar and Ansivers	
	2217123	Sat	$\begin{array}{c\|c} \hline \text { Jr } \cdot \text { indy } \\ \text { MpC } \end{array}$	$\begin{array}{c\|} 1.51 \\ 10.00-10.85 \end{array}$	EM	Thenors	Exeras -3(f)-probloms Solvivg	Lehture	41	Black Boark	questan and Aviluers	
			$\begin{array}{c\|c} \hline s r-i n x \lambda & \\ \text { MpL } & 11 \end{array}$	$\begin{array}{c\|} 3 r d \\ 11 \cdot 51-12-4 \end{array}$	Ema	Theary	Partal frachons -7.3 .6 solved Problems	Lectur	46	Black Board	Questan and Auswers	
	2317127						Jun day					
	241762	man	$\begin{gathered} \hline s r \operatorname{inh} h \\ \text { mic } \end{gathered}$		EM	Theary	UNIT Exam an De movir't the	$L \operatorname{Lin} x$	45	Blalk Buard	quatan ard Answers	
			$\left\lvert\, \begin{gathered} \text { Jrinkey } \\ \text { rape } \end{gathered}\right.$	$\begin{gathered} 6 \mathrm{~m} \\ 335-42 \end{gathered}$	EM	Theay	Solved problems - $3 \cdot 6 \cdot 13$	Lecture	4.1	Blalk Roard	Auestan ard Andaros	
	2577123	Tue	st.indr MiC	$\begin{gathered} 2 \pi d \\ 1055-1150 \end{gathered}$	CM	Thayy	Exurces-710)-irublem Selviog	Lectux	46	Black Board	Questan and Amwers	
			Ir inker MnC	$\left\lvert\, \begin{gathered} 4 m \\ 1-45-2.49 \end{gathered}\right.$	EM	Theory	Exercese - 3(9)- rololems solving	Lertux	42	Black Boad	Questar and Answers	
	2617123	wed	Sr-inker MAC	$\begin{gathered} 3 r d \\ 11.50-124 \end{gathered}$	EM	Theary	Exarcis-7(1)-problms solving	Lecture	46	Black Boand	Questar and Anslume	
			Tr-irter Mre	$\begin{array}{c\|} 5 \mathrm{~m} \\ 2 \cdot 6-3-35 \\ \hline \end{array}$	EM	Thasy	Cramer'l Rule-Introductur	Lecture	42	Black Board	Quertar and Anscorix	
	271723	Thurs	Jr-inher Mape	$\begin{gathered} 4 \mathrm{~m} \\ 1.45-2.49 \end{gathered}$	EM	Theory	problims an Cramer't Ruk	Lectur	42	Blact Boand	Quertanand Anlesten	
			Sr-intes MpL	6 m 355 5.45	ETA	Thoary	Solved problem Solving-7.3.9	Lecture	45	Black Boad	Questar and Anlwers	
	2817123	Fri	$\begin{gathered} \text { Tr-inkr } \\ m p \end{gathered}$	$\begin{gathered} 2^{n d} \\ 10.75-1.56 \end{gathered}$	EM	Thoong	Matrix- Inversion memad	Lectur	42	Blalk Board	Quution and Ansivers	
			Gr-inder MpC	$\begin{array}{\|c\|} \hline 4 \mathrm{~m} \\ 1 \cdot 45-2 \cdot \mathrm{nh} \\ \hline \end{array}$	EM	Troory	Exercise - 7 (d)-problions solving	Lectux	45	Black Boand	Questan and sumuras	
	2917123						- moharram					
	301712						- Sun day				$)$	
			-									
						,						
	signature	Pu	Lecturer				Signature of the Department $\mathrm{In}-\mathrm{C}$	harge				ncipal

PERFORMA FOR ANNUAL CURRICULAR PLAN (Department Wise) : 2002-2023, SKR GOVT DEGREE COLLEGE RJY
Name of the Department : MATHEMATICS Name of the Lectures : C.V.PRASAD, M.VEERRAJU, M.S.CHAKRAVARTHI. Class\& Group: I \& II \& III B.S.c(MPC,MPCs,MSCs

Month	Paper	$\begin{gathered} \text { Hours } \\ \text { availa } \\ \text { ble } \end{gathered}$	Syllabus topic	Additional Input/Value Addition to be Provided/taug ht	Curricular Activity				Co-curricular Activity				Remarks
					Activity to be Conducted	Hours allotted	$\begin{gathered} \hline \text { Whethe } \\ \text { r } \\ \text { conduct } \\ \text { ed } \end{gathered}$	If not, alternate Dt.	Activity to be Conducted	Hours allotted	Whether conducted	If not, alternate Dt.	
$\underset{\text { ER }}{\substack{\text { NOVEMB }}}$	I	21	Linear Differential Equations: Differential equations reducible to linear from; Exact differential equations; Integrating factors	Teaching and Learning Practice	Bridge Course	10	Yes		Quiz	1	Yes		
	III	21	Binary Operation-Algebraic structuresemi group-monoid-Group definition and elementary properties Finite and Infinite groups-examples-order of a group, Composition tables with examples	Teaching and Learning Practice	Syllabus Circulations	1	Yes		Previous Knowledge Discussed	3	Yes		
	V A	17	1. Euler's Integrals-Beta and Gamma Functions, Elementary properties of Gamma Functions. 2. Transformation of Gamma Functions. Another form of Beta Function. 3. Relation between Beta and Gamma Functions.	Teaching and Learning Practice	Syllabus Circulations	1	Yes		Solving Second Order Differential Equations	5	Yes		
	VB	20	Introduction, Forward differences, Backward differences, Central Differences, Symbolic relations, nth Differences of Some functions, Advancing difference formula, Differences of Factorial Polynomial. Newton's formulae for interpolation. Central Difference Interpolation Formulae	Teaching and Learning Practice	Explanation of Curriculum	2	Yes						

PERFORMA FOR ANNUAL CURRICULAR PLAN (Department Wise): 2022-2023, SKR GOVT DEGREE COLLEGE RJY

Month	Paper	$\begin{gathered} \text { Hour } \\ \text { s } \\ \text { avail } \\ \text { able } \end{gathered}$	Syllabus topic	Additional Input/Value Addition to be Provided/taug ht	Curricular Activity				Co-curricular Activity				Remarks
					Activity to be Conducted	Hours allotted	$\begin{gathered} \hline \text { Whethe } \\ \text { r } \\ \text { conduct } \\ \text { ed } \end{gathered}$	If not, alternat e Dt.	Activity to be Conducted	Hours allotted	Whether conducted		
$\begin{aligned} & \text { DECEMB } \\ & \text { ER } \end{aligned}$	I	21	Equations solvable for p; Equations solvable for y ; Equations solvable for x ; Equations homogeneous in x and y ; Equations of the first degree in x and y - Clairaut's Equation.	Teaching and Learning Practice	Assignment	3	Yes		Group Discussion	2	Yes		
	III	22	Subgroup: Complex DefinitionMultiplication of two complexes inverse of a complex-subgroup definition-examples-criterion for a complex to be a subgroups. Co-sets and Lagrange's Theorem; Cossets Definition-Properties of Cossets-Index of a subgroups of a finite groups-Lagrange's Theorem.	Teaching and Learning Practice	Group Discussion	1	Yes		NATIONAL MATHEMATI CS DAY CELEBRATIO N 0N THE OCATION OF SRINIVAS RAMANUJAN BIRTHDAY	1	YES		
	VA	22	Introduction, summary of useful results, power series, radius of convergence, theorems on Power series, Introduction of Power series solutions of ordinary differential equation, Ordinary and singular points, regular irregular singular points, power series solution.	Teaching and Learning Practice	Solving second order differential equation	5	Yes		Quiz	2	Yes		
	VB	21	Central Difference Interpolation Formulae, Gauss's Forward interpolation formula, Gauss's backward interpolation formula, Sterling's formula, Bessel's formula, Derivatives using central difference formula, Sterling's interpolation formula, Newton's divided difference formula, Maximum and minimum values of a tabulated function.	Teaching and Learning Practice	Guest Lecture by Students	4	Yes		Assignment	3	yes		

PERFORMA FOR ANNUAL CURRICULAR PLAN (Department Wise) : 2022-2023, SKR GOVT DEGREE COLLEGE RJY

Month	Paper	$\begin{gathered} \text { Hour } \\ \text { s } \\ \text { avail } \\ \text { able } \end{gathered}$	Syllabus topic	Additional Input/Value Addition to be Provided/taug ht	Curricular Activity				Co-curricular Activity				Remarks
					Activity to be Conducted	Hours allotted	$\begin{gathered} \hline \text { Whethe } \\ \text { r } \\ \text { conduct } \\ \text { ed } \end{gathered}$	If not, alternat e Dt.	Activity to be Conducted	Hours allotted	Whether conducted	$\begin{gathered} \text { If not, } \\ \text { alternate Dt. } \end{gathered}$	
JANUAR Y	I	17	Solution of homogeneous liner differential equations of order n with constant coefficients Solution of $f(D) y=0$. General Solution of $f(D) y=Q$ when Q is a function $1 / \mathrm{f}(\mathrm{D})$ is expressed as partial fractions of x, P.I of $f(D) y=Q$ when $\mathrm{Q}=\mathrm{be}^{\text {ax }}$, P.I. of $\mathrm{f}(\mathrm{D}) \mathrm{y}=\mathrm{Q}$ when Q is $\mathrm{b} \sin \mathrm{ax}$ or $\mathrm{b} \cos \mathrm{ax}$.	Teaching and Learning Practice	MID Exam	1	Yes		Group Discussion	2	Yes		
	III	18	Definition of normal subgroup-proper and improper normal subgroupHamilton group-criterion for a subgroup to be an normal subgroup-intersection the fundamental theorem on Homomorphism and applications. permutatinos-Cayley's theorem.	Teaching and Learning Practice	MID Exam	1	Yes		Group Definition	3	Yes		
	VA	18	Hermite Differntial Equations, Solution of Hermite Equation, Hermite polynomials, generating function. Other forms for Hermite Polynomials, Rodrigues formula for Hermite Polynomials, to find first few Hermite Polynomials. Orthogonal properties, Recurrence formula	Teaching and Learning Practice	MID Exam	1	Yes		Quiz	2	Yes		

PERFORMA FOR ANNUAL CURRICULAR PLAN (Department Wise) : 2022-2023, SKR GOVT DEGREE COLLEGE RJY

Month	Paper	Hour s avail able	Syllabus topic	Additional Input/Value Addition to be Provided/taug ht	Curricular Activity				Co-curricular Activity				Remarks
					Activity to be Conducted	Hours allotted	Whethe r conduct ed	If not, alternat e Dt.	Activity to be Conducted	Hours allotted	Whether conducted	If not, alternate Dt.	
FEBRUA RY	I	22	Solution of the non-homogeneous linear differtial equations with constant coefficients. P.I. of $f(D) y=Q$ when $\mathrm{Q}=\mathrm{bx} \mathrm{x}^{\mathrm{k}}, \mathrm{Q}-\mathrm{e}^{\mathrm{ax}} \mathrm{V}, \mathrm{Q}=\mathrm{xV}, \mathrm{Q}=\mathrm{X}^{\mathrm{m}} \mathrm{V}$, where V is a function of x .	Teaching and Learning Practice	MID Exam	2	Yes						
	III	22	Definition of homomorphism-Image of homomorphism elementary properties of homomorphism-Isomorphismautomorphism definitions and elementary properties-kernel of a homomorphism-fundamental theorem on Homomorphism and applications.definition of permutationpermutation multiplication-Inverse of a permutation-cyclic permutations-transposition-even and odd permutations-Canley's theorem.	Teaching and Learning Practice	MID Exam	2	Yes		Group Definition	3	Yes		
	V	22	General quadrature formula one errors, Trapezoidal rule, Simpson's 1/3-rule, Simpson's 3/8-rule, and Weddle's rules, Euler-McLaurin Formula of summation and quadrature, The Euler transformation.	Teaching and Learning Practice	MID Exam	2	Yes		Quiz	2	Yes		
	VI	22	Definition, Solution of Legendre's equation, Legendre polynomial of degree n, generating function of Legendre Polynomials, Definition of $P_{n}(x)$ and $Q_{n}(x)$, General solution of Legendre's Equation is the coefficient of h^{n}, in the expansion of $\left(1-2 x h+h^{2}\right)^{-1 / 2}$, Orthogonal properties of Legendre's polynomials, Recurrence formulas for Legendre's Polynomials.	Teaching and Learning Practice	MID Exam	2	Yes						

PERFORMA FOR ANNUAL CURRICULAR PLAN (Department Wise) : 2022-2023, SKR GOVT DEGREE COLLEGE RJY

Month	Paper	$\begin{array}{\|c\|c} \hline \text { Hour } \\ \text { s sail } \\ \text { abale } \\ \text { abe } \end{array}$	Syllabus topic	Additional Input/Value Addition to be Provided/taug ht	Curricular Activity				Co-curricular Activity				Remarks
					Activity to be Conducted	Hours allotted	$\begin{gathered} \text { Whethe } \\ \text { r } \\ \text { conduct } \\ \text { ed } \end{gathered}$	If not, alternat e Dt.	Activity to be Conducted	Hours allotted	Whether	If not, alternate Dt	
MARCH	I	16	Method of variation of parameters; Linear differential Equations with nonconstant coefficient (Solution when a part of CF is known method only); The Cauchy-Euler Equation, Legendre's linear equations, Seminar/Quiz/ Assignments/Applications of Differential Equations to Real life Problem/Problem Solving.	Teaching and Learning Practice	Revision Study Hours				Group Definition	3	Yes		
	III	16	Rings Definition of Ring and basic properties, Boolean Rings, divisors of zero and cancellation laws Rings, Integral Domains, Division Ring and Fields, The characteristic of a ring-The characteristic of an Integral Domain, The characteristic of a Field. Sub Rings.	Teaching and Learning Practice	Revision Study Hours				Quiz	2	Yes		
	V	16	Introduction, Solution by Talyor's Series, Picard's method of successive approximations, Eluer's method, Modified Euler's method, Runge-Kutta methods.	Teaching and Learning Practice	Revision Study Hours								
	VI	16	Definition, Solution of Bessel's equation, Bessel's function of the first kind of order n, Bessel's function of the second kind of order n . Integration of Bessel's equation in series form $=0$, Definition of $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$, recurrence formulae for $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$. Generating function for $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$.	Teaching and Learning Practice	Revision Study Hours								

PERFORMA FOR ANNUAL CURRICULAR PLAN (Department Wise) : 2022-2023, SKR GOVT DEGREE COLLEGE RJY

Month	Paper	$\begin{gathered} \text { Hour } \\ \text { s } \\ \text { avail } \\ \text { able } \end{gathered}$	Syllabus topic	Additional Input/Value Addition to be Provided/taug ht	Curricular Activity				Co-curricular Activity				Remarks
					Activity to be Conducted	Hours allotted	$\begin{gathered} \text { Whethe } \\ \text { r } \\ \text { conduct } \\ \text { ed } \\ \hline \end{gathered}$	If not, alternat e Dt.	Activity to be Conducted	Hours allotted	Whether conducted	If not, alternate Dt.	
APRIL	II	16	Equation of plane in terms of its intercepts on the axis, Equations of the plan through the given points, Length of the perpendicular from a given point to a given plane, Bisectors of angles between two planes, Combined equation of two planes, Orthogonal projection on a plane.	Teaching and Learning Practice	$\begin{aligned} & \text { INTRODU } \\ & \text { CTION } \end{aligned}$				Group Definition	3	Yes		
	IV	16	The algebraic and order properties of R,; intervals, Limit of a sequence and Convergent sequence. Bolzanoweierstrass theorem-Cauchy SequencesCauchey's general principle of convergence theorem.	Teaching and Learning Practice	$\begin{aligned} & \text { INTRODU } \\ & \text { CTION } \end{aligned}$				$\begin{gathered} \hline \text { CONDUCTED } \\ \text { ON NATIONAL } \\ \text { WEBINAR ON } \\ \text { GLIMPSES OF } \\ \text { ANCIENT } \\ \text { INDIAN } \\ \text { MATHEMATICS } \end{gathered}$	1	YES		
	VI	16	1. Euler's Integrals-Beta and Gamma Functions, Elementary properties of Gamma Functions. 2. Transformation of Gamma Functions. Another form of Beta Function. 3. Relation between Beta and Gamma Functions.	Teaching and Learning Practice	$\begin{aligned} & \text { INTRODU } \\ & \text { CTION } \end{aligned}$				Quiz	2	Yes		

PERFORMA FOR ANNUAL CURRICULAR PLAN (Department Wise) : 2022-2023, SKR GOVT DEGREE COLLEGE RJY

Month	Paper	$\begin{gathered} \text { Hour } \\ \text { s } \\ \text { avail } \\ \text { able } \end{gathered}$	Syllabus topic	Additional Input/Value Addition to be Provided/taug ht	Curricular Activity	Co-curricular Activity	Remarks
MAY	II	16	Equation of a line; Angle between a line and a plane;; Sets of conditions which determine a line' The shortest distance between two lines; The length and equations of the line of shortest distance between two straight lines; Length of the perpendicular from a given point to	Teaching and Learning Practice	Group Definition		
	IV	16	Series: Cauchey's general principle of convergence for series tests for convergence of series, Series of NonNegative Terms. P-test, Cauchey's $\mathrm{n}^{\text {th }}$ root test or Root Test, D'-Alembert's' Test or Ratio Test, Alternating SeriesLeibnitz Test, Absolute convergence and conditional convergence, semi convergence.	Teaching and Learning Practice	Mid exams		
	vi	16	1. Introduction, summary of useful results, power series, radius of convergence, theorems on power series. 2. introduction of power series solutions of ordinary differential equation. 3. ordinary and singular points, regular and irregular singular points, power series solution.	Teaching and Learning Practice	Mid exams		

	VII	16		Teaching and Learning Practice	Mid exams	

PERFORMA FOR ANNUAL CURRICULAR PLAN (Department Wise) : 2022-2023, SKR GOVT DEGREE COLLEGE RJY

Month	Paper	Hour s avail able	Syllabus topic	Additional Input/Value Addition to be Provided/taug ht	Curricular Activity	Co-curricular Activity	Remarks
JUNE	II	16	Definition and equation of the sphere; Equation of the sphere through four given points;; tangent plane; plane of contact; polar plane; pole of a plane; conjugate points; conjugate planes.	Teaching and Learning Practice		Group Discussion	
	IV	16	Limits: Real valued Functions, Boundedness of a function, Limits of functions. Some extensions of the limit concept, Infinite Limits. Limits at infinity. No. Question is to be set from this portion.	Teaching and Learning Practice		Group Definition	
	VI	16	1. Derivative using Newton's forward difference formula, Newton's back ward difference formula. 2. Derivatives using central difference formula, Stirling's interpolation formula. 3. Newton's divided difference formula, Maximum and minimum values of a tabulated function.	Teaching and Learning Practice	Birthday celebration of C.V/RAO	Quiz	

	VII	16	1. Hermite Differential Equatinos, Solution of Hermite Equation, Hermite polynomials, generating function for Hermite polynomials. 2. Other forms for Hermite Polynomials, Rodrigues formula for Hermite Polynomials, to find first few Hermite Polynomials. 3	Teaching and Learning Practice		

PERFORMA FOR ANNUAL CURRICULAR PLAN (Department Wise): 2022-2023, SKR GOVT DEGREE COLLEGE RJY

Month	Paper	Hour s avail able	Syllabus topic	Additional Input/Value Addition to be Provided/taug ht	Curricular Activity	Co-curricular Activity	Remarks
JULY	II	16	Angle of intersection of two spheres; conditions for two spheres to be orthogonal; Power of a point; radical plane; coaxal system of spheres; simplified form of the equation of two spheres. Definitions of a cone; vertex; guiding curve; condition that the general equation of the second degree should represent a cone.	Teaching and Learning Practice		Group Discussion	
	IV	16	DIFFERENTIATION AND MEAN VALUE THEOREMS: The derivability of a function, on an interval, at a point, Derivability and continuity of a function, Mean value Theorms; Rolle's Theorem, Lagrange's Theorem, Cauchy's Mean value Theorem.	Teaching and Learning Practice		Group Definition	
	VI	16	1. Definition, Solution of Legendre's equation, Legendre polynomial of degree n, generating function of Legendre polynomials. 2. Definition of $P_{n}(x)$ and $Q_{n}(x)$, General solution of Legendre's Equation (derivations not required) to show that $\operatorname{Pn}(\mathrm{x})$ is the coefficient of h^{n}, in the expansion of $\left(1-2 x h+h^{2}\right) \frac{-1}{2}$	Teaching and Learning Practice		Quiz	

	VII	16	1. General quadrature formula one errors, Trapezoidal rule. 2. Simpson's $1 / 3$-rule. Simpson's 3/8rule, and Weddle's rules. 3. Newton;s divided difference formula, Maximum and minimum values of a tabulated function.	Teaching and Learning Practice	INTRODUCTION	

PERFORMA FOR ANNUAL CURRICULAR PLAN (Department Wise): 2022-2023, SKR GOVT DEGREE COLLEGE RJY

Month	Paper	Hour s avail able	Syllabus topic	Additional Input/Value Addition to be Provided/taug ht	Curricular Activity	Co-curricular Activity	Remarks
AUGUST	II	16	Enveloping cone of a sphere; right circular cone; equation of the right circular cone with a given vertex, axis and semi vertical angle; condition that a cone may have three mutually perpendicular generators; intersection of two cones with a common vertex.	Teaching and Learning Practice	Revision Study Hours		
	IV	16	RIEMANN INTEGRATION: Riemann Integral, Riemann integral functions, Darboux theorem. Necessary and sufficient condition for R-integrability, Properties of integrable functions, Fundamental theorem of integral calculus, First mean value Theorem.	Teaching and Learning Practice	Revision Study Hours		
	VI	16	1. Deinition, Solution of Bessel's equation, Bessel's function of the first kind of order n, Bessel's function of the second kind of order n. 2. Integration of Bessel's equation in series form $=0$, Definition of $J_{n}(x)$, recurrence formulae for $J_{n}(x)$. 3. Generating function for $J_{n}(x)$.	Teaching and Learning Practice	Revision Study Hours		
	VII	16	1. Introduction, Solution by Taylor's Series. 2. Picard's method of successive approximations. 3. Euler's method, Modified Euler's method, Runge-Kutta methods.		Revision Study Hours		

TEACHING PLAN (SYNOPSIS)

Month: syploum
 subject: Hathemahy

торIC: Alurtract Hlgelve Paper: IIJ

Hous	Group: - Let Gキ¢ A set Gis said to be
Leaming Objec	a group w.r.t * operation iff G satisfies tho
Previous	
Topic Symopsis	law': let $a_{1} b \in G$
$a * b \in G \quad \forall a, b \in G$ * is called binary opration on c. ar is cloped w.r. * operation (2) Associative law:- let $a, b, c \in G$ i $\begin{aligned} & \text { ative law:- let } a, b, c \in G \quad \forall a, b, c \in G \\ & (a * b) * c=a *(b * c) \quad \forall a, \end{aligned}$ * is associative on G (3) Existenve of Identity: - $e e G \rightarrow a * e=e * a=a \quad \forall a \in G$, e is called the identily element in C (4) Exiltonce of Inverse: - For each $a \in G \exists a^{\prime} \in G \ni$ $a * a=a^{\prime} * a=e$ a^{\prime} is called an inverte of a in G It is denoted by $(G, *)$ commutative (or Abelian) group!: In a group $(G, *)$ if $a * b=f * a \quad \forall a, b \in c$ G is called an abelian group or Commutative group. Definition:- A non empty set G is said to be a group wivit "." operation if G satiffies the bollowing propesties. (1) closure law:- let $a, b \in G^{\prime}$ $a \cdot b \in G \quad \forall a, b \in c)$ \because is leiopery opiration on G. (2) Associative law:- Let $a, b, c \in G$, $(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad \forall a, b, c \in c$ 1 y asfociatice on C, (3) Exitance of Identity: $\exists e \in G \rightarrow a \cdot e=e \cdot a \geqslant a \forall a \in C$ eis called the identity element in G	
Thrust	
Skill to Studen	
mple	
Additional Inputs	from the abre, $\left(G_{i} \cdot\right)$ is called a group

Teaching Models used	Abelian group:- In a group $(G, 1)$ if fiv $a, b \in 0$
Teaching Aids used	$a \cdot b=b \cdot a \quad \forall a, b \in c$
References cited	then (G,) is called an abelian group:
Student Activity planned after the teaching	Examplest. (1) $(\mathbb{R},+$) is an alrelian group
Activity planned outside classes	(2) $\left(Q_{1}+\right)$ is an abclian group
Any other	3) $(z,+)$ is an alvelian group.

(4). \mathbb{R} doesn't form a group w.v.t ordinary multiplication"."
son we know that is binary there exsits unit-element $\mid \in \mathbb{R}$ and for each $a \neq 0 \in \mathbb{R} \xi^{-1} \in \mathbb{1}$ sech that $a \cdot-\bar{a}=a^{-1}, a=1$. fov $0 \in \mathbb{R}$ has no multipli cative inverse is \mathbb{R} So (\mathbb{R}, \cdot) is not a gloup.
(5) The set of rational numbers Q doesn't form a group w.r.t. \because operation.
Becaux $0 \in Q$ has no multeplicative inverse in Q
(6) Let $G=\mathbb{R}-\{1\}$ and $*$ defined by $a * b=a+b-a b \quad \forall a, b \in G$ Then $(G, *)$ is an abdian group
Algeleraie structure:- if an operation '.' is binary operation on G then G is called an algebrair structens.
Semi group:- Af an operation '.' is binary geration and associative is G, then G is called a semi group.
Monoidi - If'.' operation is binary and assoriatiou onG ant there exist an identity eloment in G then G is called
Monoid.
$G=\left\{A_{\alpha}=\left[\begin{array}{cc}\operatorname{cor} \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]: \alpha \in \mathbb{R}\right\}$ forms a grayp $\omega \cdot \gamma \cdot L$ matrior multaplication. Is it- an abelian?
The set of all $n \times n$ matrices forms a group w.r.t addition of matrices. Is it an abelian?
the sef of all $n \times n$ matries doesnit form a group w-rt multeppication of makriles contains suigular matrices. Suigular matioin has no ilverse. so $(G$,) is not a group.

SKR GDC (W),RAJAMAHENDRAVARAM		
Department of Mathematics Even Sem 2022-2023		
Programme \& Course outcomes		
		Programme outcomes
	$\begin{aligned} & \text { B.Sc - M.P.C , M.P.Cs, } \\ & \text { M.S.Cs } \end{aligned}$	The Bachelor of Science in Mathematics prepares graduates to understand fundamental concepts in the discipline of MATHEMATICS. The academic program will promote and realize gainsin student success. The academic program will promote and realizeefficiency in the delivery and completion of the program
SEM	Name of the course	Course outcomes
Sem-2 (course 2)	three dimensional ANALYTICAL SOLID GEOMETRY	get the knowledge of planes. basic idea of lines, sphere and cones. understand the properties of planes, lines, spheres and cones. express the problems geometrically and then to get the solution.
Sem-4 (course 4)	MATHEMATICAL REAL ANALYSIS	After successful completion of this course, the student will be able to get clear idea about the real numbers and real valued functions. obtain the skills of analyzing the concepts and applying appropriate methods for testing convergence of a sequence/series. Test the continuity and differentiability and Riemann integration of a function. Know the geometrical interpretation of mean value theorems.

SEM-4 (course 5)	LINEAR ALGEBRA	After successful completion of this course, the student will be able to; understand the concepts of vector spaces, subspaces, basis, dimension and their properties. understand the concepts of linear transformations and their properties apply Cayley- Hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods Learn the properties of inner product spaces and determine orthogonality in inner product spaces

SKR G.D.C (WOMEN) ,RAJAMAHENDRAVARAM		
Department of Mathematics odd Sem 2022-2023		
Programme \& Course outcomes		
		Programme outcomes
	$\begin{aligned} & \text { B.Sc - M.P.C , M.P.Cs, } \\ & \text { M.S.Cs } \end{aligned}$	The Bachelor of Science in Mathematics prepares graduates to understand fundamental concepts in the discipline of MATHEMATICS. The academic program will promote and realize gainsin student success. The academic program will promote and realizeefficiency in the delivery and completion of the program
SEM	Name of the course	Course outcomes
Sem-1	DEFFERENTIAL EQUATION	After successful completion of this course, the student will be able to; Solve linear differential equations Convert non exact homogeneous equations to exact differential equations by using integrating factors Know the methods of finding solutions of differential equations of the first order but not of the first Degree. Solve higher-order linear differential equations, both homogeneous and non homogeneous, with constant coefficients. Understand the concept and apply appropriate methods for solving differential equations.
Sem-3	ABSTRACT ALGEBRA	After successful completion of this course, the student will be able to; acquire the basic knowledge and structure of groups, subgroups and cyclic groups. get the significance of the notation of a normal subgroups. get the behavior of permutations and operations on them. study the homomorphisms and isomorphisms with applications. Understand the ring theory concepts with

SEM-5B		the help of knowledge in group theory and to prove theorems.
Sem-5A	NUMERICAL METHODS	After successful completion of this course, the student will be able to; understand the concepts of Forward and back ward interpolation formula, gauss forward and back ward formula, stirling formula, Legranges interpolation formula, Numerical differentiation. Numerical Integration Taylors series, Eulersmethod
MATHEMATICAL SPECIAL		After successful completion of this course, the student will be able to; understand the concepts of Beta and Gamms functions, Hermite polynomials, Legendrs polynomials, Bessels equations, pawer series solutions of ordinary differential equation
FUNCTION		

S.K.R.GOVERNMENT DEGREE COLLEGE, RAJAMAHENDRAVARAM

DEPARTMENT OF MATHEMATICS

List of Activies			
S.No	Date	List of Activities	Name of the Resourse Person
1	$10-11-2022$	Bridge Course	C.V.Prasad
2	$24-11-2022$	Guest lecture	Dr. D Ch. Paparao
3	$22-12-2022$	National Mathematic day celebration	D.V.N.Srirama Murthi
4	$27-01-2023$	Student seminar for III B.S.c Students	C.V.Prasad
5	$08-02-2023$	Peer teaching for I B.Sc Students	C.V.Prasad
6	$26-04-2023$	National webinar	Dr.P.Satyanarayana Sarma

S.K.R. GOVERNMENT DEGREE COLL.EGE(WOMEN)

 RAJAMAHENDRAVARAM(EsId.1968)
DEPARTMENTOFMATHEMATICS

I CT ONLINECLASSES(2022-2023)

NAMIE OF THELECTURER:-C.V.PRASAD

S.K.R. GOVERNMENT DEGREE COLLEGE(WOMEN) RAJAMAHENDRAVARAM(Estd.1968) (Re Acciedited at BrGrade by NAAC, Affillated to Adikavi Nannayya University)

DEPARTMENTOFMATHEMATICS
I CT ONLINECLASSES(2022-2023)
NAME OFTHELECTURER:-M.S.CHAKRAVARTHI

S.NO	DATE	SEMESTER	TOPIC
1	$09-05-23$	IVSEM	VECTOR SPACE INTADUCTION
2	$16-05-23$	IVSEM	THEOREMS ON VECTOR SPACE
3	$23-05=23$	IVSEM	VECTOR SUBSPACE
4	$26-05-23$	IVSEM	VECTOR SUB SPACE THEOREMS

\qquad e

PRINCIPAL

Certificate of Participation

This certificate is presented to C V Prasad, Lecturer in Mathematics of S.K.R.GDC, Rajamahendravaram for participating in Three days Training Program on "Internship and LMS" held at Nodal Resource Center,Rajahmundry from 02-02-2023 to 04-02-2023

	APPGCET - 2023 Post Graduation Admissions (Conducted by Andhra University, Visakhapatnarn on behalf of APSCHE)			
Hail Ticket No	30720230125	Rank	251	
Candidate Name	KOLLA NAGA SUPRIYA	Father's Name	KOLLA GOPI	
Gender	Female (F)	Caste/Region	$B C$ B/AU	

PROVISIONAL ALLOTMENT ORDER(FOF APPGCET-2023 CANDIDATES)
This is to inform that the options exercised by the candidate have been processed based on merit, rank, local area, gender, category, Special Reservation Category (CAP/PH/NCC/SPORTS) etc and the candidate has been allotted a seat in

> Sri Venkateswara University, Thupati, (SVUSPA), TIRUPATI
> in M.Sc. Statistics, (PG104) under OC_GEN_SVU category.

Tuition Fee fixed for the collegdcourse is RE. 53760/-
Tuition fee to be paid by the cardidate at the timo of admission is Rs. $53760 /$ -
Instructions to Candidates :

1. The candidate is instructed to report by clicking on Allotmentlefter and Self-Reporting under Forms tab from website https://sche.ap.gov.in.
2. Take print out of two copies of joining report and report to the allotted college with all original certificates. Submit a copy of joining report and obtain acknowledgment on 2nd copy from the College where you have reported and retain the same with you.
3. If any candidato fails to submit valid original certificates for virification in claiming his/har qualification, caste, region and any other mandatory provisions, at the allotted college, provisional alotment of the seat will be cancelled automatically.
4. Both Self reporting and reporting at the allotted college is compulsory to reaain the present allotment. The last date for Self reporting and reporting at the allotted College is 10/10/2023. Pat all necessary fees if any to the allotted college.
5. If you do not report through Self-reporting system andior not eporting at the allotted college, the provisional allotment will be cancelled and you have no claim on the seat allotied.
6. If The academic credentials verified found false at a later dath, your allotment will be cancelled and you are also liable for criminal prosecution.
7. All the Principals are requested to verity the onginal certificatis viz caste,study, income and Degree/Equivalent certificates of the admitted candidates thoroughly and request to bring to the notio of the Convenor, APPGCET-2O23 Admissions for any deviation.
8. The candidate is informed that the class work shall be commnced from $06 / 10 / 2023$ and directed to attend the class work.
*** This computer generated Provisional Allotmet Order does not require any authentication. ***

	APPGCET - 2023 Post Graduation Admissions (Conducted by Andhra University, Visakhapatnam on behalf of APSCHE)			
Hall Ticket No	30720230256	Rank	186	
Candidate Name	sanapaia geotha urra dovi	Father's Name	SANAPALA	SRINU
Gender	Fivnale (F)	Caste/Region	$B C, A / A U$	

This is to inform that the options exercised by the candidate have been procassed based on merrit, rank, local area, gender, category, Special Heservation Category (CAPsPH/NCCISPORTS) etc and the candidate has bean alionted a seat in
A.UCollege of Science A Technology, (AUCSSS), Visakhapatnam
is M .5 c . Statistica, (PG104) under OC_ GEN_AU category,
Timition Fee fixed lor the cellegeicourse is Re. 50500 -
Tuition fee so be paid by the candidaty at the time of admission is Res. 59500% -
bentructions to Cendidates:

1. The canddate is instructed to report by cilcking an Albtrment hotter and Seif-Reporting undar Forms tab from wobsite tups:/Weche ap gov, in .
2. Tabee print out of two copies of joining report and raport to the aitoted colege with nil orginal canilicates. Subenit a copy of joining report and cotain acknowledgnent on 2nd copy from the Colege where you have repoded and retain the same whit you
3. If any candidate tails to submit valid originas centilicates for verficason in dairing hiahher qualificafion, caste, region and any cher mandatory pravisions, at the silotted colege, provisionsilatmers of the seat wit be cancelled automatically.
4. Both Self repoting and reporting as the alioted calega is compusory to retain the present allotmert. The last dime for Seli reporing and reporting at the alictied College is $10 / 102023$. Pay all necessary fees if ary to the aliotted college.
5. If you do not report through Seif-reporting system andfor not reporting th the aliofed colege, the provisional ailotrient wit be cancolled and you have no ctaim on the seat pllittad.
fi. If The acadernic credentings verified found laise at a later date, your alatment will be cancelied and you are aisa linhele for riminal prosecution.
6. All the Prinoipais are mquestad to verify the onginai canticater viz casse,study, income and Degrae/Equivatent certificates of the admitred candidates thoroughly and request to bing to the notice of the Convenco, APPGCET-2023 Admissions for ary daviation.
B. The candidate is irformed than the chass work ahall bo commenced from 06/10/2023 and drected to attand the class wok

